Your browser doesn't support javascript.
loading
Genomic Scar Score: A robust model predicting homologous recombination deficiency based on genomic instability.
Yuan, Wuzhou; Ni, Jing; Wen, Hao; Shi, Weijie; Chen, Xuejun; Huang, Hongwei; Zhang, Xiaotian; Lu, Xuan; Zhu, Changbin; Dong, Hua; Yang, Shuang; Wu, Xiaohua; Chen, Xiaoxiang.
Afiliación
  • Yuan W; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Ni J; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
  • Wen H; Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Shi W; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Chen X; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Huang H; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Zhang X; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Lu X; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Zhu C; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Dong H; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Yang S; Amoy Diagnostics Co., Ltd., Xiamen, China.
  • Wu X; Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Chen X; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
BJOG ; 129 Suppl 2: 14-22, 2022 11.
Article en En | MEDLINE | ID: mdl-36485068
OBJECTIVE: To develop a novel machine learning-based algorithm called the Genomic Scar Score (GSS) for predicting homologous recombination deficiency (HRD) events. DESIGN: Method development study. SETTING: AmoyDx Medical Laboratory and Jiangsu Cancer Hospital. POPULATION OR SAMPLE: A cohort of individuals with ovarian or breast cancer (n = 377) were collected from the AmoyDx Medical Laboratory. Another cohort of patients with ovarian cancer treated with PARP inhibitors (n = 58) was enrolled in the Jiangsu Cancer Hospital. METHODS: We used linear support vector machines to build a Genomic Scar (GS) model to predict HRD events, and Kaplan-Meier analyses were performed by comparing the progression-free survival (PFS) of patients in different groups using a two-sided log-rank test. MAIN OUTCOME MEASURES: The performance of the GS model and the result of clinical validation. RESULTS: The GS model displayed more than 97.0% sensitivity to detect BRCA-deficient events, and the GS model identified patients that could benefit from poly(ADP-ribose) polymerase inhibitors (PARPi), as the GS score (GSS)-positive group had a longer progression-free survival (PFS) (9.4 versus 4.4 months; hazard ratio [HR] = 0.54, P < 0.001) than the GSS-negative group after PARPi treatment. Meanwhile, the GSS showed high concordance among different NGS panels, which implied the robustness of the GS model. CONCLUSIONS: The GS was a robust model to predict HRD and had broad clinical applications in predicting which patients will respond favourably to PARPi treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Ováricas / Inhibidores de Poli(ADP-Ribosa) Polimerasas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: BJOG Asunto de la revista: GINECOLOGIA / OBSTETRICIA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Ováricas / Inhibidores de Poli(ADP-Ribosa) Polimerasas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: BJOG Asunto de la revista: GINECOLOGIA / OBSTETRICIA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido