Your browser doesn't support javascript.
loading
Highly sensitive and selective serotonin (5-HT) electrochemical sensor based on ultrafine Fe3O4 nanoparticles anchored on carbon spheres.
Xu, Qian-Qian; Luo, Lan; Liu, Zhong-Gang; Guo, Zheng; Huang, Xing-Jiu.
Afiliación
  • Xu QQ; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei
  • Luo L; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei
  • Liu ZG; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei
  • Guo Z; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei
  • Huang XJ; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Insti
Biosens Bioelectron ; 222: 114990, 2023 Feb 15.
Article en En | MEDLINE | ID: mdl-36495719
ABSTRACT
Neurotransmitter serotonin (5-HT) is involved in various physiological and pathological processes. Therefore, its highly sensitive and selective detection in human serum is of great significance for early diagnosis of disease. In this work, employing iron phthalocyanine as Fe source, ultrafine Fe3O4 nanoparticles anchored on carbon spheres (Fe3O4/CSs) have been prepared, which exhibits an excellent electrochemical sensing performance toward 5-HT. With carbonecous spheres turned into conductive carbon spheres under the heat treatment in N2 atmosphere, iron phthalocyanine absorbed on their surfaces are simultaneously pyrolysised and oxidized, and finally transformed into ultrafine Fe3O4 nanoparticles. Electrochemical results demonstrate a high sensitivity (5.503 µA µM-1) and a low detection limit (4 nM) toward 5-HT for as-prepared Fe3O4/CSs. In combination with the morphology and physicochemical property of Fe3O4/CSs, the enhanced sensing mechanism toward 5-HT is disscussed. In addition, the developed electrochemical sensor also displays a good sensing stability and an anti-interferent ability. Further applied in real human serum samples, a satisfactory recovery rate is achieved. Promisingly, the developed electrochemical sensor can be employed for the determination of 5-HT in actual samples.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas Tipo de estudio: Diagnostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas Tipo de estudio: Diagnostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2023 Tipo del documento: Article
...