Your browser doesn't support javascript.
loading
Multimodal-Synergistic-Modulation Neuromorphic Imaging Systems for Simulating Dry Eye Imaging.
Han, Xu; Zhao, Xiaoli; Zeng, Tao; Yang, Yahan; Yu, Hongyan; Zhang, Cong; Wang, Bin; Liu, Xiaoqian; Zhang, Tao; Sun, Jing; Li, Xinyuan; Zhao, Tuo; Zhang, Mingxin; Ni, Yanping; Tong, Yanhong; Tang, Qingxin; Liu, Yichun.
Afiliación
  • Han X; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Zhao X; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Zeng T; Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore.
  • Yang Y; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Yu H; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Zhang C; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Wang B; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Liu X; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Zhang T; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Sun J; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Li X; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Zhao T; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Zhang M; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Ni Y; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Tong Y; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Tang Q; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
  • Liu Y; Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
Small ; 19(8): e2206181, 2023 02.
Article en En | MEDLINE | ID: mdl-36504477
ABSTRACT
Inspired by human eyes, the neuromorphic visual system employs a highly efficient imaging and recognition process, which offers tremendous advantages in image acquisition, data pre-processing, and dynamic storage. However, it is still an enormous challenge to simultaneously simulate the structure, function, and environmental adaptive behavior of the human eye based on one device. Here, a multimodal-synergistic-modulation neuromorphic imaging system based on ultraflexible synaptic transistors is successfully presented and firstly simulates the dry eye imaging behavior at the device level. Moreover, important functions of the human visual system in relation to optoelectronic synaptic plasticity, image erasure and enhancement, real-time preprocessing, and dynamic storage are simulated by versatile devices. This work not only simplifies the complexity of traditional neuromorphic visual systems, but also plays a positive role in the publicity of biomedical eye care.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Síndromes de Ojo Seco / Plasticidad Neuronal Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Síndromes de Ojo Seco / Plasticidad Neuronal Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China