Your browser doesn't support javascript.
loading
Optimization of metamaterials and metamaterial-microcavity based on deep neural networks.
Lan, Guoqiang; Wang, Yu; Ou, Jun-Yu.
Afiliación
  • Lan G; School of Electronic Engineering, Heilongjiang University No. 74 Xuefu Road Harbin 150080 China.
  • Wang Y; Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and Systems, Heilongjiang University Harbin 150080 China.
  • Ou JY; Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton Highfield Southampton SO17 1BJ UK bruce.ou@soton.ac.uk.
Nanoscale Adv ; 4(23): 5137-5143, 2022 Nov 22.
Article en En | MEDLINE | ID: mdl-36504733
Computational inverse-design and forward prediction approaches provide promising pathways for on-demand nanophotonics. Here, we use a deep-learning method to optimize the design of split-ring metamaterials and metamaterial-microcavities. Once the deep neural network is trained, it can predict the optical response of the split-ring metamaterial in a second which is much faster than conventional simulation methods. The pretrained neural network can also be used for the inverse design of split-ring metamaterials and metamaterial-microcavities. We use this method for the design of the metamaterial-microcavity with the absorptance peak at 1310 nm. Experimental results verified that the deep-learning method is a fast, robust, and accurate method for designing metamaterials with complex nanostructures.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Adv Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Adv Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido