Your browser doesn't support javascript.
loading
Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals.
Álvarez-González, Lucía; Arias-Sardá, Cristina; Montes-Espuña, Laia; Marín-Gual, Laia; Vara, Covadonga; Lister, Nicholas C; Cuartero, Yasmina; Garcia, Francisca; Deakin, Janine; Renfree, Marilyn B; Robinson, Terence J; Martí-Renom, Marc A; Waters, Paul D; Farré, Marta; Ruiz-Herrera, Aurora.
Afiliación
  • Álvarez-González L; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
  • Arias-Sardá C; School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
  • Montes-Espuña L; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
  • Marín-Gual L; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
  • Vara C; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
  • Lister NC; School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia.
  • Cuartero Y; CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain.
  • Garcia F; Servei de Cultius Cel.lulars-SCAC, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
  • Deakin J; Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia.
  • Renfree MB; School of Biosciences, The University of Melbourne, Victoria, VIC 3010, Australia.
  • Robinson TJ; Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
  • Martí-Renom MA; CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23
  • Waters PD; School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia.
  • Farré M; School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
  • Ruiz-Herrera A; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. Electronic addre
Cell Rep ; 41(12): 111839, 2022 12 20.
Article en En | MEDLINE | ID: mdl-36543130
ABSTRACT
Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Evolución Molecular / Marsupiales Límite: Animals Idioma: En Revista: Cell Rep Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Evolución Molecular / Marsupiales Límite: Animals Idioma: En Revista: Cell Rep Año: 2022 Tipo del documento: Article País de afiliación: España