Your browser doesn't support javascript.
loading
Tailoring the microenvironment in Fe-N-C electrocatalysts for optimal oxygen reduction reaction performance.
Wang, Qing; Lu, Ruihu; Yang, Yuqi; Li, Xuanze; Chen, Guangbo; Shang, Lu; Peng, Lishan; Sun-Waterhouse, Dongxiao; Cowie, Bruce C C; Meng, Xiangmin; Zhao, Yan; Zhang, Tierui; Waterhouse, Geoffrey I N.
Afiliación
  • Wang Q; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand.
  • Lu R; State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
  • Yang Y; iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
  • Li X; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Chen G; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Shang L; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Peng L; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand.
  • Sun-Waterhouse D; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand.
  • Cowie BCC; Australian Synchrotron, 800 Blackburn Rd., Clayton, Victoria 3168, Australia.
  • Meng X; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Zhao Y; State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address: yan2000@whut.edu.cn.
  • Zhang T; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Electronic address: tierui@mail.ipc.ac.cn.
  • Waterhouse GIN; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand. Electronic address: g.waterhouse@auckland.ac.nz.
Sci Bull (Beijing) ; 67(12): 1264-1273, 2022 06 30.
Article en En | MEDLINE | ID: mdl-36546156
ABSTRACT
Fe-N-C electrocatalysts, comprising FeN4 single atom sites immobilized on N-doped carbon supports, offer excellent activity in the oxygen reduction reaction (ORR), especially in alkaline solution. Herein, we report a simple synthetic strategy for improving the accessibility of FeN4 sites during ORR and simultaneously fine-tuning the microenvironment of FeN4 sites, thus enhancing the ORR activity. Our approach involved a simple one-step pyrolysis of a Fe-containing zeolitic imidazolate framework in the presence of NaCl, yielding a hierarchically porous Fe-N-C electrocatalyst containing tailored FeN4 sites with slightly elongated Fe-N bond distances and reduced Fe charge. The porous carbon structure improved mass transport during ORR, whilst the microenvironment optimized FeN4 sites benefitted the adsorption/desorption of ORR intermediates. Accordingly, the developed electrocatalyst, possessing a high FeN4 site density (9.9 × 1019 sites g-1) and turnover frequency (2.26 s-1), delivered remarkable ORR performance with a low overpotential (a half-wave potential of 0.90 V vs. reversible hydrogen electrode) in 0.1 mol L-1 KOH.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Sci Bull (Beijing) Año: 2022 Tipo del documento: Article País de afiliación: Nueva Zelanda

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Sci Bull (Beijing) Año: 2022 Tipo del documento: Article País de afiliación: Nueva Zelanda