Your browser doesn't support javascript.
loading
Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials.
Weizel, A; Distler, T; Detsch, R; Boccaccini, A R; Seitz, H; Budday, S.
Afiliación
  • Weizel A; Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany. Electronic address: alina.weizel@uni-rostock.de.
  • Distler T; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany.
  • Detsch R; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany.
  • Boccaccini AR; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany.
  • Seitz H; Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany.
  • Budday S; Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. Electronic address: silvia.budday@fau.de.
J Mech Behav Biomed Mater ; 138: 105618, 2023 02.
Article en En | MEDLINE | ID: mdl-36566662
ABSTRACT
Numerical simulations are a valuable tool to understand which processes during mechanical stimulations of hydrogels for cartilage replacement influence the behavior of chondrocytes and contribute to the success or failure of these materials as implants. Such simulations critically rely on the correct prediction of the material response through appropriate material models and corresponding parameters. In this study, we identify hyper-viscoelastic material parameters for numerical simulations in COMSOL Multiphysics® v. 5.6 for human articular cartilage and two replacement materials, the commercially available ChondroFillerliquid and oxidized alginate gelatin (ADA-GEL) hydrogels. We incorporate the realistic experimental boundary conditions into an inverse parameter identification scheme based on data from multiple loading modes simultaneously, including cyclic compression-tension and stress relaxation experiments. We provide individual parameter sets for the unconditioned and conditioned responses and discuss how viscoelastic effects are related to the materials' microstructure. ADA-GEL and ChondroFillerliquid exhibit faster stress relaxation than cartilage with lower relaxation time constants, while cartilage has the largest viscoelastic stress contribution. The elastic response predominates in ADA-GEL and ChondroFillerliquid, while the viscoelastic response predominates in cartilage. These results will help to simulate mechanical stimulations, support the development of suitable materials with distinct mechanical properties in the future and provide parameters and insight into the time-dependent material behavior of human articular cartilage.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cartílago Articular Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Mech Behav Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cartílago Articular Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Mech Behav Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article