Your browser doesn't support javascript.
loading
Biomimetic Active Materials Guided Immunogenic Cell Death for Enhanced Cancer Immunotherapy.
Huang, Guojun; Liu, Lanlan; Pan, Hong; Cai, Lintao.
Afiliación
  • Huang G; Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
  • Liu L; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Pan H; Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
  • Cai L; University of Chinese Academy of Sciences, Beijing, 100049, China.
Small Methods ; 7(5): e2201412, 2023 05.
Article en En | MEDLINE | ID: mdl-36572642
Despite immunotherapy emerging as a vital approach to improve cancer treatment, the activation of efficient immune responses is still hampered by immunosuppression, especially due to the low tumor immunogenicity. Immunogenic cell death (ICD) is a promising strategy to reshape the tumor microenvironment (TME) for achieving high immunogenicity. Various stimuli are able to effectively initiate their specific ICD by utilizing the corresponding ICD-inducer. However, the ICD-guided antitumor immune effects are usually impaired by various biological barriers and TME-associated immune resistance. Biomimetic active materials are being extensively explored as guided agents for ICD due to their unique advantages. In this review, two major strategies are systematically introduced that have been employed to exploit biomimetic active materials guided ICD for cancer immunotherapy, mainly including naive organism-derived nanoagents and engineered bioactive platforms. This review outlines the recent advances in the field at biomimetic active materials guided physiotherapy, chemotherapy, and biotherapy for ICD induction. The advances and challenges of biomimetic active materials guided ICD for cancer immunotherapy applications are further discussed in future clinical practice. This review provides an overview of the advances of biomimetic active materials for targeting immunoregulation and treatment and can contribute to the future of advanced antitumor combination therapy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias / Antineoplásicos Idioma: En Revista: Small Methods Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias / Antineoplásicos Idioma: En Revista: Small Methods Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania