Your browser doesn't support javascript.
loading
Discrete Orientations of Interfacial Waters Direct Crystallization of Mica-Binding Proteins.
Alberstein, Robert G; Prelesnik, Jesse L; Nakouzi, Elias; Zhang, Shuai; De Yoreo, James J; Pfaendtner, Jim; Tezcan, F Akif; Mundy, Christopher J.
Afiliación
  • Alberstein RG; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
  • Prelesnik JL; Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Nakouzi E; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • Zhang S; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • De Yoreo JJ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Pfaendtner J; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • Tezcan FA; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Mundy CJ; Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.
J Phys Chem Lett ; 14(1): 80-87, 2023 Jan 12.
Article en En | MEDLINE | ID: mdl-36573690
ABSTRACT
Understanding the basis of templated molecular assembly on a solid surface requires a fundamental comprehension of both short- and long-range aqueous response to the surface under a variety of solution conditions. Herein we provide a detailed picture of how the molecular-scale response to different mica surfaces yields distinct solvent orientations that produce quasi-static directional potentials onto which macromolecules can adsorb. We connect this directionality to observed (a)symmetric epitaxial alignment of designed proteins onto these surfaces, corroborate our findings with 3D atomic force microscopy experiments, and identify slight differences in surface structure as the origin of this effect. Our work provides a detailed picture of the intrinsic electrolyte response in the vicinity of mineral interfaces, with clear predictions for experiment, and highlights the role of solvent on the predictive assembly of hierarchical materials on mineral surfaces.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Portadoras / Minerales Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Portadoras / Minerales Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos