Your browser doesn't support javascript.
loading
Perfect adaptation achieved by transport limitations governs the inorganic phosphate response in S. cerevisiae.
Ming Yip, Hon; Cheng, Shiyu; Olson, Evan J; Crone, Michael; Maerkl, Sebastian J.
Afiliación
  • Ming Yip H; Institute of Bioengineering, École Polytechnique Fédérale de, Lausanne CH-1015, Switzerland.
  • Cheng S; Institute of Bioengineering, École Polytechnique Fédérale de, Lausanne CH-1015, Switzerland.
  • Olson EJ; Institute of Bioengineering, École Polytechnique Fédérale de, Lausanne CH-1015, Switzerland.
  • Crone M; Institute of Bioengineering, École Polytechnique Fédérale de, Lausanne CH-1015, Switzerland.
  • Maerkl SJ; Institute of Bioengineering, École Polytechnique Fédérale de, Lausanne CH-1015, Switzerland.
Proc Natl Acad Sci U S A ; 120(2): e2212151120, 2023 01 10.
Article en En | MEDLINE | ID: mdl-36608289
ABSTRACT
Cells cope with and adapt to ever-changing environmental conditions. Sophisticated regulatory networks allow cells to adjust to these fluctuating environments. One such archetypal system is the Saccharomyces cerevisiae Pho regulon. When external inorganic phosphate (Pi) concentration is low, the Pho regulon activates, expressing genes that scavenge external and internal Pi. However, the precise mechanism controlling this regulon remains elusive. We conducted a systems analysis of the Pho regulon on the single-cell level under well-controlled environmental conditions. This analysis identified a robust, perfectly adapted Pho regulon state in intermediate Pi conditions, and we identified an intermediate nuclear localization state of the transcriptional master regulator Pho4p. The existence of an intermediate nuclear Pho4p state unifies and resolves outstanding incongruities associated with the Pho regulon, explains the observed programmatic states of the Pho regulon, and improves our general understanding of how nature evolves and controls sophisticated gene regulatory networks. We further propose that robustness and perfect adaptation are not achieved through complex network-centric control but by simple transport biophysics. The ubiquity of multitransporter systems suggests that similar mechanisms could govern the function of other regulatory networks as well.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfatos / Saccharomyces cerevisiae Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfatos / Saccharomyces cerevisiae Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article País de afiliación: Suiza