Your browser doesn't support javascript.
loading
Injectable carboxymethyl chitosan/nanosphere-based hydrogel with dynamic crosslinking network for efficient lubrication and sustained drug release.
Yang, Lumin; Zhao, Xiaoduo; Kong, Yunsong; Li, Renjie; Li, Tao; Wang, Rui; Ma, Zhengfeng; Liang, Yong-Min; Ma, Shuanhong; Zhou, Feng.
Afiliación
  • Yang L; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University
  • Zhao X; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
  • Kong Y; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Li R; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Li T; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang R; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai
  • Ma Z; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai
  • Liang YM; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
  • Ma S; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai
  • Zhou F; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Int J Biol Macromol ; 229: 814-824, 2023 Feb 28.
Article en En | MEDLINE | ID: mdl-36610563
ABSTRACT
The typical symptoms of arthritis are inflammation and lubrication deficiency in joints, which increase wear of articular cartilage along with pain of patients. In the present study, one kind of novel macromolecular/microsphere-based injectable hydrogels (CMC-ODex NPs) with dual functionalities of drug release and lubrication, was fabricated via dynamic Schiff base crosslinking network between carboxymethyl chitosan (CMC) and oxidation dextran nanoparticles (ODex NPs). The CMC-ODex NPs hydrogels exhibited typical viscosity-thinning phenomenon at wide range of shear rates and obvious gel-sol transition feature at specific strain. As a result, CMC-ODex NPs hydrogels presented low friction coefficient at the sliding interface of bovine articular cartilages, resulting from the boundary lubrication of hydrogel and the rolling friction effect of ODex NPs. Furthermore, the anti-inflammatory drug (dexamethasone, DXM) encapsulated in ODex NPs exhibited sustainable drug release behavior during the dynamic shearing process, which making CMC-ODex NPs hydrogels possessed good and stable anti-inflammatory effect. CMC-ODex NPs hydrogels was prepared without utilizing any toxic agents, thus demonstrated excellent cytocompatibility. Our experimental results reveal the CMC-ODex NPs hydrogels is promising to be used as functional lubricant for inhibiting the development of arthritis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Quitosano / Nanosferas Límite: Animals / Humans Idioma: En Revista: Int J Biol Macromol Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Quitosano / Nanosferas Límite: Animals / Humans Idioma: En Revista: Int J Biol Macromol Año: 2023 Tipo del documento: Article