Your browser doesn't support javascript.
loading
Switchable DNA Photocatalysts for Radical Polymerization Controlled by Chemical Stimuli.
Cox, Caleb A; Ogorek, Ashley N; Habumugisha, Jean Paul; Martell, Jeffrey D.
Afiliación
  • Cox CA; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
  • Ogorek AN; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
  • Habumugisha JP; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
  • Martell JD; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
J Am Chem Soc ; 145(3): 1818-1825, 2023 01 25.
Article en En | MEDLINE | ID: mdl-36629375
Polymerization catalysts that activate in response to specific chemical triggers offer spatial and temporal control over polymer synthesis, facilitating the development of responsive materials and custom polymer coatings. However, existing catalysts switch their activity through mechanisms that are not generalizable to chemically diverse stimuli. To approach the level of control exhibited in biological polymer synthesis, switchable polymerization catalysts need to be configurable for activation in response to diverse chemical stimuli. Here, we combine synthetic photocatalysts with conformation-switching DNA aptamers to create polymerization catalysts that respond to diverse chemical stimuli. We use the secondary structure of DNA to bring a photocatalyst and quencher dye into proximity, turning off photocatalysis. The DNA structure can be precisely designed to change conformation in response to a molecular trigger, moving the photocatalyst far from the quencher and activating photocatalysis. We show these photocatalysts can initiate free-radical polymerization to form bulk hydrogels in response to complementary DNA, a metal ion (Zn2+), or small molecules (glucose and hydrocortisone). We demonstrate the biocompatibility of these switchable photocatalysts by triggering their activation on the surface of yeast cells. Finally, we perform reversible-deactivation radical polymerization through photoinduced electron/energy transfer reversible addition-fragmentation chain-transfer in a dual-stimulus manner, in which catalytic activity is regulated reversibly by photoirradiation and the conformational state of the DNA catalyst. These results demonstrate that DNA conformational changes triggered by chemically diverse stimuli can regulate the activity of radical polymerization photocatalysts. This platform offers new capabilities in spatially and temporally controlled polymer synthesis, with potential applications in diagnostics, sensing, and environmentally responsive materials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / ADN Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / ADN Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos