Your browser doesn't support javascript.
loading
Microfluidic Engineering of Crater-Terrain Hydrogel Microparticles: Toward Novel Cell Carriers.
Zheng, Yajing; Wu, Zengnan; Hou, Ying; Li, Nan; Zhang, Qiang; Lin, Jin-Ming.
Afiliación
  • Zheng Y; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
  • Wu Z; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
  • Hou Y; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
  • Li N; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
  • Zhang Q; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
  • Lin JM; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
ACS Appl Mater Interfaces ; 15(6): 7833-7840, 2023 Feb 15.
Article en En | MEDLINE | ID: mdl-36630085
Fabrication and application of novel anisotropic microparticles are of wide interest. Herein, a new method for producing novel crater-terrain hydrogel microparticles is presented using a concept of droplet-aerosol impact and regional polymerization. The surface pattern of microparticles is similar to the widespread "crater" texture on the lunar surface and can be regulated by the impact morphology of aerosols on the droplet surface. Methodological applicability was demonstrated by producing ionic-cross-linked (alginate) and photo-cross-linked (poly(ethylene glycol) diacrylate, PEGDA) microparticles. Additionally, the crater-terrain microparticles (CTMs) can induce nonspecific protein absorption on their surface to acquire cell affinity, and they were exploited as cell carriers to load living cells. Cells could adhere and proliferate, and a special cellular adhesion fingerprint was observed on the novel cell carrier. Therefore, the scalable manufacturing method and biological potential make the engineered microparticles promising to open a new avenue for exploring cell-biomaterial crosstalk.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrogeles / Microfluídica Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrogeles / Microfluídica Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos