Your browser doesn't support javascript.
loading
Tunable Mid-Infrared Interband Emission from Tensile-Strained InGaAs Quantum Dots.
Vallejo, Kevin D; Cabrera-Perdomo, Carlos I; Garrett, Trent A; Drake, Madison D; Liang, Baolai; Grossklaus, Kevin A; Simmonds, Paul J.
Afiliación
  • Vallejo KD; Condensed Matter and Materials Physics, Idaho National Laboratory, Idaho Falls, Idaho83415, United States.
  • Cabrera-Perdomo CI; Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, 98160Zacatecas, Zac., Mexico.
  • Garrett TA; Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho83725, United States.
  • Drake MD; Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho83725, United States.
  • Liang B; California NanoSystems Institute, University of California Los Angeles, Los Angeles, California90095, United States.
  • Grossklaus KA; Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts02155United States.
  • Simmonds PJ; Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho83725, United States.
ACS Nano ; 17(3): 2318-2327, 2023 Feb 14.
Article en En | MEDLINE | ID: mdl-36649642
We demonstrate the ability to tailor self-assembled growth of In0.5Ga0.5As quantum dots (QDs) on GaSb(111)A surfaces by molecular beam epitaxy. Spontaneous formation via the Volmer-Weber growth mode produces QDs with excellent structural and optical quality. By harnessing tensile strain to reduce their band gap energy, these QDs are characterized by light emission that extends into the midwave infrared wavelength range of 3.2-3.9 µm (0.318-0.388 eV). As we increase QD size, we can tune the band alignment from type-III to type-II, where light emission occurs due to interband recombination between quantum confined electrons in the InGaAs QDs and holes in the GaSb barriers. Of particular interest is an unusual blue-shift in emission wavelength with increasing QD size, which we attribute to the incorporation of Sb into the InGaAs QDs from the GaSb barriers. By expanding this approach to produce tensile-strained QDs from other narrow band gap semiconductors, we anticipate the development of a range of highly tunable mid-infrared light sources.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos