Your browser doesn't support javascript.
loading
Radially and Azimuthally Pure Vortex Beams from Phase-Amplitude Metasurfaces.
de Oliveira, Michael; Piccardo, Marco; Eslami, Sahand; Aglieri, Vincenzo; Toma, Andrea; Ambrosio, Antonio.
Afiliación
  • de Oliveira M; Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, 20133 Milan, Italy.
  • Piccardo M; Physics Department, Politecnico di Milano, 20133 Milan, Italy.
  • Eslami S; Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, 20133 Milan, Italy.
  • Aglieri V; Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
  • Toma A; Clean Room Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
  • Ambrosio A; Clean Room Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
ACS Photonics ; 10(1): 290-297, 2023 Jan 18.
Article en En | MEDLINE | ID: mdl-36691429
ABSTRACT
To exploit the full potential of the transverse spatial structure of light using the Laguerre-Gaussian basis, it is necessary to control the azimuthal and radial components of the photons. Vortex phase elements are commonly used to generate these modes of light, offering precise control over the azimuthal index but neglecting the radially dependent amplitude term, which defines their associated corresponding transverse profile. Here, we experimentally demonstrate the generation of high-purity Laguerre-Gaussian beams with a single-step on-axis transformation implemented with a dielectric phase-amplitude metasurface. By vectorially structuring the input beam and projecting it onto an orthogonal polarization basis, we can sculpt any vortex beam in phase and amplitude. We characterize the azimuthal and radial purities of the generated vortex beams, reaching a purity of 98% for a vortex beam with l =50 and p = 0. Furthermore, we comparatively show that the purity of the generated vortex beams outperforms those generated with other well-established phase-only metasurface approaches. In addition, we highlight the formation of "ghost" orbital angular momentum orders from azimuthal gratings (analogous to ghost orders in ruled gratings), which have not been widely studied to date. Our work brings higher-order vortex beams and their unlimited potential within reach of wide adoption.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Photonics Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Photonics Año: 2023 Tipo del documento: Article País de afiliación: Italia