Mechanistic Insights of TiO2 Nanoparticles with Different Surface Charges on Aß42 Peptide Early Aggregation: An In Vitro and In Silico Study.
Langmuir
; 39(5): 1997-2007, 2023 02 07.
Article
en En
| MEDLINE
| ID: mdl-36706054
Humans may intendedly or unintendedly be exposed to nanomaterials through food, water, and air. Upon exposure, nanomaterials can pierce the bloodstream and translocate to secondary organs, including the brain, which warrants increased concern for the potential health impacts of nanomaterials. Due to their large surface area and interaction energy, nanomaterials can adsorb surrounding proteins. The misfolding and self-aggregation of amyloid-ß (Aß) have been considered significant factors in the pathogenesis of Alzheimer's disease. We thus hypothesize that brain-targeted nanomaterials may modulate Aß aggregation and cause related neurotoxicity. Here, we showed that TiO2 nanoparticles (NPs) and their aminated analogue (TiO2-NH2 NPs) adsorb the Aß42 peptide and accelerate its early oligomerization. Molecular dynamics simulation indicated that the adsorption onto TiO2 NPs and TiO2-NH2 NPs surfaces can stabilize the ß-sheet-rich conformations formed by the Aß42 peptide. The binding sites between TiO2-NH2 NPs and the Aß42 oligomer surface were mainly concentrated in the hydrophobic core region, and the ß-sheet conformation spontaneously formed by Aß42 oligomers can be better stabilized through a hydrogen bond, electrostatic attraction, and hydrophobic interaction. This study will further help in the understanding of nanomaterial-related neurotoxicities and the regulation of their applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Nanopartículas
/
Enfermedad de Alzheimer
Límite:
Humans
Idioma:
En
Revista:
Langmuir
Asunto de la revista:
QUIMICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos