Your browser doesn't support javascript.
loading
Differential sensitivities of photosynthetic processes and carbon loss mechanisms govern N-induced variation in net carbon assimilation rate for field-grown cotton.
Parkash, Ved; Snider, John L; Sintim, Henry Y; Hand, Lavesta C; Virk, Gurpreet; Pokhrel, Amrit.
Afiliación
  • Parkash V; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
  • Snider JL; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
  • Sintim HY; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
  • Hand LC; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
  • Virk G; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
  • Pokhrel A; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
J Exp Bot ; 74(8): 2638-2652, 2023 04 18.
Article en En | MEDLINE | ID: mdl-36715336
ABSTRACT
Nitrogen (N) deficiency limits the net carbon assimilation rate (AN), but the relative N sensitivities of photosynthetic component processes and carbon loss mechanisms remain relatively unexplored for field-grown cotton. Therefore, the objective of the current study was to define the relative sensitivity of individual physiological processes driving N deficiency-induced declines in AN for field-grown cotton. Among the potential diffusional limitations evaluated, mesophyll conductance was the only parameter substantially reduced by N deficiency, but this did not affect CO2 availability in the chloroplast. A number of metabolic processes were negatively impacted by N deficiency, and these effects were more pronounced at lower leaf positions in the cotton canopy. Ribulose bisphosphate (RuBP) regeneration and carboxylation, AN, and gross photosynthesis were the most sensitive metabolic processes to N deficiency, whereas photosynthetic electron transport processes, electron flux to photorespiration, and dark respiration exhibited intermediate sensitivity to N deficiency. Among thylakoid-specific processes, the quantum yield of PSI end electron acceptor reduction was the most sensitive process to N deficiency. It was concluded that AN is primarily limited by Rubisco carboxylation and RuBP regeneration under N deficiency in field-grown cotton, and the differential N sensitivities of the photosynthetic process and carbon loss mechanisms contributed significantly to photosynthetic declines.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Carbono Tipo de estudio: Diagnostic_studies Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Carbono Tipo de estudio: Diagnostic_studies Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos