Your browser doesn't support javascript.
loading
Optical Modeling of Plasmonic Nanoparticles with Electronically Depleted Layers.
Petrini, Nicolò; Ghini, Michele; Curreli, Nicola; Kriegel, Ilka.
Afiliación
  • Petrini N; Functional Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163Genova, Italy.
  • Ghini M; Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146, Genova, Italy.
  • Curreli N; Functional Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163Genova, Italy.
  • Kriegel I; Functional Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163Genova, Italy.
J Phys Chem C Nanomater Interfaces ; 127(3): 1576-1587, 2023 Jan 26.
Article en En | MEDLINE | ID: mdl-36721771
ABSTRACT
Doped metal oxide (MO) nanocrystals (NCs) are well-known for the localized surface plasmon resonance in the infrared range generated by free electrons in the conduction band of the material. Owing to the intimate connection between plasmonic features and the NC's carrier density profile, proper modeling can unveil the underlying electronic structure. The carrier density profile in MO NCs is characterized by the presence of an electronically depleted layer as a result of the Fermi level pinning at the surface of the NC. Moreover, the carrier profile can be spatially engineered by tuning the dopant concentrations in core-shell architectures, generating a rich plethora of plasmonic features. In this work, we systematically studied the influence of the simulation parameters used for optical modeling of representative experimental absorption spectra by implementing multilayer models. We highlight in particular the importance of minimizing the fit parameters by support of experimental results and the importance of interparameter relationships. We show that, in all cases investigated, the depletion layer is fundamental to correctly describe the continuous spectra evolution. We foresee that this multilayer model can be used to design the optoelectronic properties of core-shell systems in the framework of energy band and depletion layer engineering.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem C Nanomater Interfaces Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem C Nanomater Interfaces Año: 2023 Tipo del documento: Article País de afiliación: Italia