Your browser doesn't support javascript.
loading
An overview of mixture modelling for latent evolutions in longitudinal data: Modelling approaches, fit statistics and software.
van der Nest, Gavin; Lima Passos, Valéria; Candel, Math J J M; van Breukelen, Gerard J P.
Afiliación
  • van der Nest G; Department of Methodology and Statistics, and Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands. Electronic address: g.vandernest@maastrichtuniversity.nl.
  • Lima Passos V; Department of Methodology and Statistics, and Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands. Electronic address: valeria.limapassos@maastrichtuniversity.nl.
  • Candel MJJM; Department of Methodology and Statistics, and Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands. Electronic address: math.candel@maastrichtuniversity.nl.
  • van Breukelen GJP; Department of Methodology and Statistics, and Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands; Department of Methodology and Statistics, Graduate School of Psychology and Neuroscience, Maastricht University, the Netherlands. Electronic address: gerard.vbreu
Adv Life Course Res ; 43: 100323, 2020 Mar.
Article en En | MEDLINE | ID: mdl-36726256
The use of finite mixture modelling (FMM) is becoming increasingly popular for the analysis of longitudinal repeated measures data. FMMs assist in identifying latent classes following similar paths of temporal development. This paper aims to address the confusion experienced by practitioners new to these methods by introducing the various available techniques, which includes an overview of their interrelatedness and applicability. Our focus will be on the commonly used model-based approaches which comprise latent class growth analysis (LCGA), group-based trajectory models (GBTM), and growth mixture modelling (GMM). We discuss criteria for model selection, highlight often encountered challenges and unresolved issues in model fitting, showcase model availability in software, and illustrate a model selection strategy using an applied example.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Life Course Res Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Life Course Res Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos