Your browser doesn't support javascript.
loading
3D ordered amorphous and porous TiO2 framework anode with low insertion barrier and fast kinetics for K-ion hybrid capacitors.
Li, Hongyang; Sun, Xiao; Gou, Huiyang; Zhang, Chengwei; Wang, Gongkai.
Afiliación
  • Li H; School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China.
  • Sun X; School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China.
  • Gou H; Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China.
  • Zhang C; School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address: cwzhang@hebut.edu.cn.
  • Wang G; School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address: wang.gongkai@hebut.edu.cn.
J Colloid Interface Sci ; 638: 161-172, 2023 May 15.
Article en En | MEDLINE | ID: mdl-36736117
TiO2 is considered as a low cost, long-term stable, and safe anode for high power K-ion hybrid capacitors (KICs) due to its abundant reserve, small volume expansion rate, and sloping voltage plateau that avoids K-ion plating at high voltage polarization. However, the enhancement of its low capacity and sluggish kinetics caused by poor electroconductivity and high insertion barrier is still challenging to further develop high-performance KICs. Herein, the reduced graphene oxide (rGO) is embedded in the walls of 3D ordered macro-/mesoporous TiO2 (termed as TiO2@rGO framework) to create intimate TiO2/rGO interfaces, ensuring the effectively electron transportation during potassiation/depotassiation of TiO2 while maintaining rapid ions/electrolyte diffusion. Furthermore, the controlled amorphous TiO2 framework can further lower the lattice insertion energies, contributing to a fast accommodation of K-ion. As expected, the amorphous TiO2@rGO framework (TiO2@rGO-1) exhibits a superior rate capability (148.8 mAh g-1 at 5 A g-1) and cycling stability (171.2 mAh g-1 at 1 A g-1 after 800 cycles). The assembled KICs can reach a high energy/power density of 125.2 Wh kg-1/4267.4 W kg-1 as well as a long-term lifespan. This tactic provides a reliable and general way to design a TiO2-based anode with fast kinetics toward high-performance KICs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Potasio Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Potasio Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos