Your browser doesn't support javascript.
loading
3D Printing of Electron/Ion-Flux Dual-Gradient Anodes for Dendrite-Free Zinc Batteries.
He, Hanna; Zeng, Li; Luo, Dan; He, Jun; Li, Xiaolong; Guo, Zaiping; Zhang, Chuhong.
Afiliación
  • He H; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
  • Zeng L; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
  • Luo D; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
  • He J; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
  • Li X; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
  • Guo Z; School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia.
  • Zhang C; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
Adv Mater ; 35(17): e2211498, 2023 Apr.
Article en En | MEDLINE | ID: mdl-36747353
3D porous Zn-metal anodes have aroused widespread interest for Zn-ion batteries (ZIBs). Nevertheless, the notorious "top-growth" dendrites caused by the intrinsic top-concentrated ions and randomly distributed electrons may ultimately trigger a cell failure. Herein, an electron/ion-flux dual-gradient 3D porous Zn anode is reported for dendrite-free ZIBs by adopting 3D printing technology. The 3D-printed Zn anode with layer-by-layer bottom-up attenuating Ag nanoparticles (3DP-BU@Zn) establishes dual-gradient electron/ion fluxes, i.e., an internal bottom-up gradient electron flux created by bottom-rich conductive Ag nanoparticles, and a gradient ion flux resulting from zincophilic Ag nanoparticles which pump ions toward the bottom. Meanwhile, the 3D-printing-enabled hierarchical porous structure and continuously conducting network endow unimpeded electron transfer and ion diffusion among the electrode, dominating a bottom-preferential Zn deposition behavior. As a result, the 3DP-BU@Zn symmetrical cell affords highly reversible Zn plating/stripping with an extremely small voltage hysteresis of 17.7 mV and a superior lifespan over 630 h at 1 mA cm-2 and 1 mAh cm-2 . Meanwhile, the 3DP-BU@Zn//VO2 full cell exhibits remarkable cyclic stability over 500 cycles. This unique dual-gradient strategy sheds light on the roadmap for the next-generation safe and durable Zn-metal batteries.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania