Laser Reduced Graphene Oxide Electrode for Pathogenic Escherichia coli Detection.
ACS Appl Mater Interfaces
; 2023 Feb 14.
Article
en En
| MEDLINE
| ID: mdl-36786303
Graphene-based materials are of interest in electrochemical biosensing due to their unique properties, such as high surface areas, unique electrochemical properties, and biocompatibility. However, the scalable production of graphene electrodes remains a challenge; it is typically slow, expensive, and inefficient. Herein, we reported a simple, fast, and maskless method for large-scale, low-cost reduced graphene oxide electrode fabrication; using direct writing (laser scribing and inkjet printing) coupled with a stamp-transferring method. In this process, graphene oxide is simultaneously reduced and patterned with a laser, before being press-stamped onto polyester sheets. The transferred electrodes were characterized by SEM, XPS, Raman, and electrochemical methods. The biosensing utility of the electrodes was demonstrated by developing an electrochemical test for Escherichia coli. These biosensors exhibited a wide dynamic range (917-2.1 × 107 CFU/mL) of low limits of detection (283 CFU/mL) using just 5 µL of sample. The test was also verified in spiked artificial urine, and the sensor was integrated into a portable wireless system driven and measured by a smartphone. This work demonstrates the potential to use these biosensors for real-world, point-of-care applications. Hypothetically, the devices are suitable for the detection of other pathogenic bacteria.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
España
Pais de publicación:
Estados Unidos