Your browser doesn't support javascript.
loading
WS22 database, Wigner Sampling and geometry interpolation for configurationally diverse molecular datasets.
Pinheiro, Max; Zhang, Shuang; Dral, Pavlo O; Barbatti, Mario.
Afiliación
  • Pinheiro M; Aix Marseille University, CNRS, ICR, Marseille, France. max.pinheiro-jr@univ-amu.fr.
  • Zhang S; State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
  • Dral PO; State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
  • Barbatti M; Aix Marseille University, CNRS, ICR, Marseille, France. mario.barbatti@univ-amu.fr.
Sci Data ; 10(1): 95, 2023 02 15.
Article en En | MEDLINE | ID: mdl-36792601
Multidimensional surfaces of quantum chemical properties, such as potential energies and dipole moments, are common targets for machine learning, requiring the development of robust and diverse databases extensively exploring molecular configurational spaces. Here we composed the WS22 database covering several quantum mechanical (QM) properties (including potential energies, forces, dipole moments, polarizabilities, HOMO, and LUMO energies) for ten flexible organic molecules of increasing complexity and with up to 22 atoms. This database consists of 1.18 million equilibrium and non-equilibrium geometries carefully sampled from Wigner distributions centered at different equilibrium conformations (either at the ground or excited electronic states) and further augmented with interpolated structures. The diversity of our datasets is demonstrated by visualizing the geometries distribution with dimensionality reduction as well as via comparison of statistical features of the QM properties with those available in existing datasets. Our sampling targets broader quantum mechanical distribution of the configurational space than provided by commonly used sampling through classical molecular dynamics, upping the challenge for machine learning models.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Data Año: 2023 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Data Año: 2023 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido