Your browser doesn't support javascript.
loading
3D meso/macroporous carbon from MgO-templated pyrolysis of waste plastic as an efficient electrode for supercapacitors.
Chen, Shaoqin; Fang, Siyuan; Lim, Aniqa Ibnat; Bao, Jiming; Hu, Yun Hang.
Afiliación
  • Chen S; Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA.
  • Fang S; Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA.
  • Lim AI; Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, TX, 77204, USA.
  • Bao J; Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, TX, 77204, USA.
  • Hu YH; Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA. Electronic address: yunhangh@mtu.edu.
Chemosphere ; 322: 138174, 2023 May.
Article en En | MEDLINE | ID: mdl-36806807
Converting waste plastic into valuable carbon materials as the electrode for supercapacitors represents a sustainable way to deal with the severe waste plastic-related environmental issues. However, ideal carbon materials for supercapacitors require not only a large specific surface area but also abundant meso/macropores, which is still challenging for conventional synthesis methods. Herein, MgO-templated pyrolysis with chemical activation was demonstrated as an effective approach to convert waste polyethylene terephthalate (PET) plastic bottles into 3D meso/macroporous carbon (MMPC) with both large total surface area (1863.55 m2/g) and meso/macropore surface area (1478.46 m2/g). Furthermore, it exhibited a high capacitance of 191.4 F/g and an excellent rate capability (86.3% retention from 0.5 to 10 A/g) for supercapacitor. This work provides not only a facile approach to synthesize 3D meso/macroporous carbon materials but also a sustainable way to mitigate plastic-derived pollution.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plásticos / Carbono Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plásticos / Carbono Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido