Your browser doesn't support javascript.
loading
Tuning nonequilibrium phase transitions with inertia.
Omar, Ahmad K; Klymko, Katherine; GrandPre, Trevor; Geissler, Phillip L; Brady, John F.
Afiliación
  • Omar AK; Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
  • Klymko K; NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • GrandPre T; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Geissler PL; Department of Chemistry, University of California, Berkeley, California 94720, USA.
  • Brady JF; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
J Chem Phys ; 158(7): 074904, 2023 Feb 21.
Article en En | MEDLINE | ID: mdl-36813709
ABSTRACT
In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation-dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...