Your browser doesn't support javascript.
loading
Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data.
Boelrijk, Jim; van Herwerden, Denice; Ensing, Bernd; Forré, Patrick; Samanipour, Saer.
Afiliación
  • Boelrijk J; AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands. j.h.m.boelrijk@uva.nl.
  • van Herwerden D; Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands. j.h.m.boelrijk@uva.nl.
  • Ensing B; Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands.
  • Forré P; AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands.
  • Samanipour S; Computational Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Amsterdam, The Netherlands.
J Cheminform ; 15(1): 28, 2023 Feb 24.
Article en En | MEDLINE | ID: mdl-36829215
Non-target analysis combined with liquid chromatography high resolution mass spectrometry is considered one of the most comprehensive strategies for the detection and identification of known and unknown chemicals in complex samples. However, many compounds remain unidentified due to data complexity and limited number structures in chemical databases. In this work, we have developed and validated a novel machine learning algorithm to predict the retention index (r[Formula: see text]) values for structurally (un)known chemicals based on their measured fragmentation pattern. The developed model, for the first time, enabled the predication of r[Formula: see text] values without the need for the exact structure of the chemicals, with an [Formula: see text] of 0.91 and 0.77 and root mean squared error (RMSE) of 47 and 67 r[Formula: see text] units for the NORMAN ([Formula: see text]) and amide ([Formula: see text]) test sets, respectively. This fragment based model showed comparable accuracy in r[Formula: see text] prediction compared to conventional descriptor-based models that rely on known chemical structure, which obtained an [Formula: see text] of 0.85 with an RMSE of 67.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Cheminform Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Cheminform Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido