Your browser doesn't support javascript.
loading
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges.
Abdelaziz, Ahmed G; Nageh, Hassan; Abdo, Sara M; Abdalla, Mohga S; Amer, Asmaa A; Abdal-Hay, Abdalla; Barhoum, Ahmed.
Afiliación
  • Abdelaziz AG; Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt.
  • Nageh H; Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo 11837, Egypt.
  • Abdo SM; Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt.
  • Abdalla MS; Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt.
  • Amer AA; Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza 12622, Egypt.
  • Abdal-Hay A; Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt.
  • Barhoum A; Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, Cairo 11835, Egypt.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Article en En | MEDLINE | ID: mdl-36829698
ABSTRACT
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Egipto

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Egipto