Your browser doesn't support javascript.
loading
Correlative Fluorescence and Raman Microscopy to Define Mitotic Stages at the Single-Cell Level: Opportunities and Limitations in the AI Era.
Voros, Csaba; Bauer, David; Migh, Ede; Grexa, Istvan; Végh, Attila Gergely; Szalontai, Balázs; Castellani, Gastone; Danka, Tivadar; Dzeroski, Saso; Koos, Krisztian; Piccinini, Filippo; Horvath, Peter.
Afiliación
  • Voros C; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Bauer D; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Migh E; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Grexa I; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Végh AG; Institute of Biophysics, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Szalontai B; Institute of Biophysics, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Castellani G; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via G. Massarenti 9, I-40126 Bologna, Italy.
  • Danka T; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Dzeroski S; Department of Knowledge Technologies, Jozef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia.
  • Koos K; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Temesvári krt. 62, H-6726 Szeged, Hungary.
  • Piccinini F; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via G. Massarenti 9, I-40126 Bologna, Italy.
  • Horvath P; Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio Dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, I-47014 Meldola, Italy.
Biosensors (Basel) ; 13(2)2023 Jan 26.
Article en En | MEDLINE | ID: mdl-36831953
Nowadays, morphology and molecular analyses at the single-cell level have a fundamental role in understanding biology better. These methods are utilized for cell phenotyping and in-depth studies of cellular processes, such as mitosis. Fluorescence microscopy and optical spectroscopy techniques, including Raman micro-spectroscopy, allow researchers to examine biological samples at the single-cell level in a non-destructive manner. Fluorescence microscopy can give detailed morphological information about the localization of stained molecules, while Raman microscopy can produce label-free images at the subcellular level; thus, it can reveal the spatial distribution of molecular fingerprints, even in live samples. Accordingly, the combination of correlative fluorescence and Raman microscopy (CFRM) offers a unique approach for studying cellular stages at the single-cell level. However, subcellular spectral maps are complex and challenging to interpret. Artificial intelligence (AI) may serve as a valuable solution to characterize the molecular backgrounds of phenotypes and biological processes by finding the characteristic patterns in spectral maps. The major contributions of the manuscript are: (I) it gives a comprehensive review of the literature focusing on AI techniques in Raman-based cellular phenotyping; (II) via the presentation of a case study, a new neural network-based approach is described, and the opportunities and limitations of AI, specifically deep learning, are discussed regarding the analysis of Raman spectroscopy data to classify mitotic cellular stages based on their spectral maps.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría Raman / Inteligencia Artificial Idioma: En Revista: Biosensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Hungria Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría Raman / Inteligencia Artificial Idioma: En Revista: Biosensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Hungria Pais de publicación: Suiza