Your browser doesn't support javascript.
loading
Conformational landscapes of artificial peptides predicted by various force fields: are we ready to simulate ß-amino acids?
Park, Jihye; Lee, Hee-Seung; Kim, Hyungjun; Choi, Jeong-Mo.
Afiliación
  • Park J; Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea. linus16@kaist.ac.kr.
  • Lee HS; Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea. linus16@kaist.ac.kr.
  • Kim H; Center for Multiscale Chiral Architectures, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Choi JM; Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea. linus16@kaist.ac.kr.
Phys Chem Chem Phys ; 25(10): 7466-7476, 2023 Mar 08.
Article en En | MEDLINE | ID: mdl-36848062
With the introduction of artificial peptides as antimicrobial agents and organic catalysts, numerous efforts have been made to design foldamers with desirable structures and functions. Computational tools are a helpful proxy for revealing the dynamic structures at atomic resolution and understanding foldamer's complex structure-function relationships. However, the performance of conventional force fields in predicting the structures of artificial peptides has not been systematically evaluated. In this study, we critically assessed three popular force fields, AMBER ff14SB, CHARMM36m, and OPLS-AA/L, in predicting conformational propensities of a ß-peptide foldamer at monomer and hexamer levels. Simulation results were compared to those obtained from quantum chemistry calculations and experimental data. We also utilised replica exchange molecular dynamics simulations to investigate the energy landscape of each force field and assess the similarities and differences between force fields. We compared different solvent systems in the AMBER ff14SB and CHARMM36m frameworks and confirmed the unanimous role of hydrogen bonds in shaping energy landscapes. We anticipate that our data will pave the way for further improvements to force fields and for understanding the role of solvents in peptide folding, crystallisation, and engineering.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Aminoácidos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Aminoácidos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido