Your browser doesn't support javascript.
loading
Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries.
Yuan, Ziyan; Yang, Xuhui; Lin, Chuyuan; Xiong, Peixun; Su, Anmin; Fang, Yixing; Chen, Xiaochuan; Fan, Haosen; Xiao, Fuyu; Wei, Mingdeng; Qian, Qingrong; Chen, Qinghua; Zeng, Lingxing.
Afiliación
  • Yuan Z; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Yang X; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Lin C; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Xiong P; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
  • Su A; College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
  • Fang Y; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Chen X; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Fan H; College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
  • Xiao F; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Wei M; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
  • Qian Q; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Chen Q; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
  • Zeng L; Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control &
J Colloid Interface Sci ; 640: 487-497, 2023 Jun 15.
Article en En | MEDLINE | ID: mdl-36871513
ABSTRACT
Rechargeable aqueous zinc-ion batteries have great promise for becoming next-generation storage systems, although the irreversible intercalation of Zn2+ and sluggish reaction kinetics impede their wide application. Therefore, it is urgent to develop highly reversible zinc-ion batteries. In this work, we modulate the morphology of vanadium nitride (VN) with different molar amounts of cetyltrimethylammonium bromide (CTAB). The optimal electrode has porous architecture and excellent electrical conductivity, which can alleviate volume expansion/contraction and allow for fast ion transmission during the Zn2+ storage process. Furthermore, the CTAB-modified VN cathode undergoes a phase transition that provides a better framework for vanadium oxide (VOx). With the same mass of VN and VOx, VN provides more active material after phase conversion due to the molar mass of the N atom being less than that of the O atom, thus increasing the capacity. As expected, the cathode displays an excellent electrochemical performance of 272 mAh g-1 at 5 A g-1, high cycling stability up to 7000 cycles, and excellent performance over a wide temperature range. This discovery creates new possibilities for the development of high-performance multivalent ion aqueous cathodes with rapid reaction mechanisms.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article
...