Your browser doesn't support javascript.
loading
Ameliorating liver disease in an autosomal recessive polycystic kidney disease mouse model.
Yanda, Murali K; Zeidan, Adi; Cebotaru, Liudmila.
Afiliación
  • Yanda MK; Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
  • Zeidan A; Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
  • Cebotaru L; Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G404-G414, 2023 05 01.
Article en En | MEDLINE | ID: mdl-36880660
ABSTRACT
Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Riñón Poliquístico Autosómico Recesivo Límite: Animals / Humans Idioma: En Revista: Am J Physiol Gastrointest Liver Physiol Asunto de la revista: FISIOLOGIA / GASTROENTEROLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Riñón Poliquístico Autosómico Recesivo Límite: Animals / Humans Idioma: En Revista: Am J Physiol Gastrointest Liver Physiol Asunto de la revista: FISIOLOGIA / GASTROENTEROLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos