Your browser doesn't support javascript.
loading
Deletion of the transcriptional regulator TFAP4 accelerates c-MYC-driven lymphomagenesis.
Potts, Margaret A; Mizutani, Shinsuke; Garnham, Alexandra L; Li Wai Suen, Connie S N; Kueh, Andrew J; Tai, Lin; Pal, Martin; Strasser, Andreas; Herold, Marco J.
Afiliación
  • Potts MA; The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.
  • Mizutani S; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
  • Garnham AL; The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.
  • Li Wai Suen CSN; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
  • Kueh AJ; Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
  • Tai L; The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.
  • Pal M; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
  • Strasser A; The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.
  • Herold MJ; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
Cell Death Differ ; 30(6): 1447-1456, 2023 06.
Article en En | MEDLINE | ID: mdl-36894688
ABSTRACT
Many lymphoid malignancies arise from deregulated c-MYC expression in cooperation with additional genetic lesions. While many of these cooperative genetic lesions have been discovered and their functions characterised, DNA sequence data of primary patient samples suggest that many more do exist. However, the nature of their contributions to c-MYC driven lymphomagenesis have not yet been investigated. We identified TFAP4 as a potent suppressor of c-MYC driven lymphoma development in a previous genome-wide CRISPR knockout screen in primary cells in vivo [1]. CRISPR deletion of TFAP4 in Eµ-MYC transgenic haematopoietic stem and progenitor cells (HSPCs) and transplantation of these manipulated HSPCs into lethally irradiated animals significantly accelerated c-MYC-driven lymphoma development. Interestingly, TFAP4 deficient Eµ-MYC lymphomas all arose at the pre-B cell stage of B cell development. This observation prompted us to characterise the transcriptional profile of pre-B cells from pre-leukaemic mice transplanted with Eµ-MYC/Cas9 HSPCs that had been transduced with sgRNAs targeting TFAP4. This analysis revealed that TFAP4 deletion reduced expression of several master regulators of B cell differentiation, such as Spi1, SpiB and Pax5, which are direct target genes of both TFAP4 and MYC. We therefore conclude that loss of TFAP4 leads to a block in differentiation during early B cell development, thereby accelerating c-MYC-driven lymphoma development.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-myc / Linfoma Límite: Animals Idioma: En Revista: Cell Death Differ Año: 2023 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-myc / Linfoma Límite: Animals Idioma: En Revista: Cell Death Differ Año: 2023 Tipo del documento: Article País de afiliación: Australia