Your browser doesn't support javascript.
loading
Optimization of shadow evaporation and oxidation for reproducible quantum Josephson junction circuits.
Moskalev, Dmitry O; Zikiy, Evgeniy V; Pishchimova, Anastasiya A; Ezenkova, Daria A; Smirnov, Nikita S; Ivanov, Anton I; Korshakov, Nikita D; Rodionov, Ilya A.
Afiliación
  • Moskalev DO; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia.
  • Zikiy EV; Dukhov Automatics Research Institute (VNIIA), Moscow, 127055, Russia.
  • Pishchimova AA; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia.
  • Ezenkova DA; Dukhov Automatics Research Institute (VNIIA), Moscow, 127055, Russia.
  • Smirnov NS; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia.
  • Ivanov AI; Dukhov Automatics Research Institute (VNIIA), Moscow, 127055, Russia.
  • Korshakov ND; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia.
  • Rodionov IA; Dukhov Automatics Research Institute (VNIIA), Moscow, 127055, Russia.
Sci Rep ; 13(1): 4174, 2023 Mar 13.
Article en En | MEDLINE | ID: mdl-36914735
ABSTRACT
The most commonly used physical realization of superconducting qubits for quantum circuits is a transmon. There are a number of superconducting quantum circuits applications, where Josephson junction critical current reproducibility over a chip is crucial. Here, we report on a robust chip scale Al/AlOx/Al junctions fabrication method due to comprehensive study of shadow evaporation and oxidation steps. We experimentally demonstrate the evidence of optimal Josephson junction electrodes thickness, deposition rate and deposition angle, which ensure minimal electrode surface and line edge roughness. The influence of oxidation method, pressure and time on critical current reproducibility is determined. With the proposed method we demonstrate Al/AlOx/Al junction fabrication with the critical current variation [Formula see text] less than 3.9% (from 150 × 200 to 150 × 600 nm2 area) and 7.7% (for 100 × 100 nm2 area) over 20 × 20 mm2 chip. Finally, we fabricate separately three 5 × 10 mm2 chips with 18 transmon qubits (near 4.3 GHz frequency) showing less than 1.9% frequency variation between qubits on different chips. The proposed approach and optimization criteria can be utilized for a robust wafer-scale superconducting qubit circuits fabrication.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Rusia