Your browser doesn't support javascript.
loading
Bubble wall confinement-driven molecular assembly toward sub-12 nm and beyond precision patterning.
Qu, Zhiyuan; Zhou, Peng; Min, Fanyi; Chen, Shengnan; Guo, Mengmeng; Huang, Zhandong; Ji, Shiyang; Yan, Yongli; Yin, Xiaodong; Jiang, Hanqiu; Ke, Yubin; Zhao, Yong Sheng; Yan, Xuehai; Qiao, Yali; Song, Yanlin.
Afiliación
  • Qu Z; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Zhou P; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
  • Min F; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Chen S; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Guo M; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
  • Huang Z; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Ji S; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
  • Yan Y; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Yin X; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
  • Jiang H; School of Chemical Engineering and Technology, Xi'an JiaoTong University, Shaanxi 710049, P. R. China.
  • Ke Y; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
  • Zhao YS; Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Yan X; Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Qiao Y; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
  • Song Y; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.
Sci Adv ; 9(11): eadf3567, 2023 Mar 17.
Article en En | MEDLINE | ID: mdl-36921052
Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos