Your browser doesn't support javascript.
loading
Oxidation State Engineering in Octahedral Ni by Anchored Sulfate to Boost Intrinsic Oxygen Evolution Activity.
Zhang, Tao; Liu, Yipu; Tong, Li; Yu, Jie; Lin, Shiwei; Li, Yue; Fan, Hong Jin.
Afiliación
  • Zhang T; School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
  • Liu Y; State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China.
  • Tong L; State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China.
  • Yu J; Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
  • Lin S; State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China.
  • Li Y; Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
  • Fan HJ; School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
ACS Nano ; 17(7): 6770-6780, 2023 Apr 11.
Article en En | MEDLINE | ID: mdl-36939286
Promoting the electron occupancy of active sites to unity is an effective method to enhance the oxygen evolution reaction (OER) performance of spinel oxides, but it remains a great challenge. Here, an in situ approach is developed to modify the valence state of octahedral Ni cations in NiFe2O4 inverse spinel via surface sulfates (SO42-). Different from previous studies, SO42- is directly anchored on the spinel surface instead of forming from uncontrolled conversion or surface reconstruction. Experiment and theoretical calculations reveal the precise adsorption sites and spatial arrangement for SO42- species. As a main promoting factor, surface SO42- effectively converts the crystal field stable Ni state (t2g6eg2) to the near-unity eg electron state (t2g6eg1). Moreover, the inevitable oxygen vacancies (Vo) further optimize the energy barrier of the potential-determining step (from OH* to O*). This co-modification strategy enhances turnover frequency-based electrocatalytic activity about two orders higher than the control sample without surface sulfates. This work may provide insight into the OER activity enhancement mechanism by the oxyanion groups.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2023 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2023 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Estados Unidos