Your browser doesn't support javascript.
loading
Data augmentation and multimodal learning for predicting drug response in patient-derived xenografts from gene expressions and histology images.
Partin, Alexander; Brettin, Thomas; Zhu, Yitan; Dolezal, James M; Kochanny, Sara; Pearson, Alexander T; Shukla, Maulik; Evrard, Yvonne A; Doroshow, James H; Stevens, Rick L.
Afiliación
  • Partin A; Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States.
  • Brettin T; Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States.
  • Zhu Y; Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States.
  • Dolezal JM; Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States.
  • Kochanny S; Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States.
  • Pearson AT; Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States.
  • Shukla M; Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States.
  • Evrard YA; Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States.
  • Doroshow JH; Division of Cancer Therapeutics and Diagnosis, National Cancer Institute, Bethesda, MD, United States.
  • Stevens RL; Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States.
Front Med (Lausanne) ; 10: 1058919, 2023.
Article en En | MEDLINE | ID: mdl-36960342
Patient-derived xenografts (PDXs) are an appealing platform for preclinical drug studies. A primary challenge in modeling drug response prediction (DRP) with PDXs and neural networks (NNs) is the limited number of drug response samples. We investigate multimodal neural network (MM-Net) and data augmentation for DRP in PDXs. The MM-Net learns to predict response using drug descriptors, gene expressions (GE), and histology whole-slide images (WSIs). We explore whether combining WSIs with GE improves predictions as compared with models that use GE alone. We propose two data augmentation methods which allow us training multimodal and unimodal NNs without changing architectures with a single larger dataset: 1) combine single-drug and drug-pair treatments by homogenizing drug representations, and 2) augment drug-pairs which doubles the sample size of all drug-pair samples. Unimodal NNs which use GE are compared to assess the contribution of data augmentation. The NN that uses the original and the augmented drug-pair treatments as well as single-drug treatments outperforms NNs that ignore either the augmented drug-pairs or the single-drug treatments. In assessing the multimodal learning based on the MCC metric, MM-Net outperforms all the baselines. Our results show that data augmentation and integration of histology images with GE can improve prediction performance of drug response in PDXs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Med (Lausanne) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Med (Lausanne) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza