Your browser doesn't support javascript.
loading
Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy.
Hsiao, Shih-Chieh; Li, Chia-Yu; Chang, Chih-I; Tseng, Tien-Yu; Pan, Yeong-Tsuen; Kuo, Jui-Chao.
Afiliación
  • Hsiao SC; Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
  • Li CY; Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
  • Chang CI; Department of New Materials Research and Development, China Steel Corporation, Kaohsiung 81233, Taiwan.
  • Tseng TY; Department of New Materials Research and Development, China Steel Corporation, Kaohsiung 81233, Taiwan.
  • Pan YT; ThinTech Materials Technology Co., Ltd., Kaohsiung 82151, Taiwan.
  • Kuo JC; Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Materials (Basel) ; 16(6)2023 Mar 17.
Article en En | MEDLINE | ID: mdl-36984287
ABSTRACT
In the present work, we take the influences of activated slip systems and the orientation spread into account to predict the cup height using analytical earing models and compare the predicted results with experimental results. The effect of boundary conditions of the various stress states and the work hardening exponents are compared and discussed for profile of single crystals. A stress ratio of -0.3 and a hardening exponent of 0.3 are selected for the prediction of earing profiles. The combination of activation of the single slip systems and orientation spread provides the best prediction of deep-drawing profiles. With further consideration of the orientation spread, an increase in the total orientation leads to peak-broadening, i.e., broad and smooth ears. Furthermore, the difference of the height between the maximum and minimum value of cup profiles is reduced because of the orientation spread. The profile for C is found with single ear at 45°, while the other components individually reveal double ears at 35° and 50° for S, at 15° and 45° for B, at 0° and 90° for Cube, at 5° and 90° for r-Cube, and at 15° and 90° for G. Herein, simple analytical earing models are proposed to understand the effects of slip systems and the orientation spread. The deep-drawing profiles are predicted with six major texture components.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Taiwán
...