Your browser doesn't support javascript.
loading
Modified extended object tracker for 2D lidar data using random matrix model.
Li, Peng; Chen, Cheng; You, Cong-Zhe; Qiu, Jun-da.
Afiliación
  • Li P; School of Computer Engineering, Jiangsu University of Technology, Changzhou, 213001, China. lipengjiangnan@163.com.
  • Chen C; School of Computer Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
  • You CZ; School of Computer Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
  • Qiu JD; School of Computer Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
Sci Rep ; 13(1): 5095, 2023 Mar 29.
Article en En | MEDLINE | ID: mdl-36991153
The random matrix (RM) model is a typical extended object-modeling method that has been widely used in extended object tracking. However, existing RM-based filters usually assume that the measurements follow a Gaussian distribution, which may lead to a decrease in accuracy when the filter is applied to the lidar system. In this paper, a new observation model used to modify an RM smoother by considering the characteristics of 2D LiDAR data is proposed. Simulation results show that the proposed method achieves a better performance than the original RM tracker in a 2D lidar system.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Prognostic_studies Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Prognostic_studies Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido