Your browser doesn't support javascript.
loading
Dynamic Service Function Chain Deployment and Readjustment Method Based on Deep Reinforcement Learning.
Ran, Jing; Wang, Wenkai; Hu, Hefei.
Afiliación
  • Ran J; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
  • Wang W; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
  • Hu H; School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Sensors (Basel) ; 23(6)2023 Mar 12.
Article en En | MEDLINE | ID: mdl-36991766
With the advent of Software Defined Network (SDN) and Network Functions Virtualization (NFV), network operators can offer Service Function Chain (SFC) flexibly to accommodate the diverse network function (NF) requirements of their users. However, deploying SFCs efficiently on the underlying network in response to dynamic SFC requests poses significant challenges and complexities. This paper proposes a dynamic SFC deployment and readjustment method based on deep Q network (DQN) and M Shortest Path Algorithm (MQDR) to address this problem. We develop a model of the dynamic deployment and readjustment of the SFC problem on the basis of the NFV/SFC network to maximize the request acceptance rate. We transform the problem into a Markov Decision Process (MDP) and further apply Reinforcement Learning (RL) to achieve this goal. In our proposed method (MQDR), we employ two agents that dynamically deploy and readjust SFCs collaboratively to enhance the service request acceptance rate. We reduce the action space for dynamic deployment by applying the M Shortest Path Algorithm (MSPA) and decrease the action space for readjustment from two dimensions to one. By reducing the action space, we decrease the training difficulty and improve the actual training effect of our proposed algorithm. The simulation experiments show that MDQR improves the request acceptance rate by approximately 25% compared with the original DQN algorithm and 9.3% compared with the Load Balancing Shortest Path (LBSP) algorithm.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza