Your browser doesn't support javascript.
loading
Insight into the relationships between total suspended particles and mercury in meltwater in a typical glacierized basin in the inland Tibetan Plateau.
Sun, Xuejun; Zhang, Qianggong; Li, Mingyue; Wang, Jie; Lu, Zijian; Guo, Junming; Kang, Shichang; Shi, Jianbo.
Afiliación
  • Sun X; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory o
  • Zhang Q; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China. Electronic address: qianggong.zhang@itpcas.ac.cn.
  • Li M; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang J; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Lu Z; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Guo J; State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
  • Kang S; State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Shi J; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Stu
J Hazard Mater ; 452: 131250, 2023 Jun 15.
Article en En | MEDLINE | ID: mdl-37004441
ABSTRACT
Mercury (Hg) released by melting glaciers is likely to bind to suspended particles in meltwater runoff, posing potential risks to downstream ecosystems. The rapidly receding glaciers on the Tibetan Plateau promote the export of total suspended particles (TSP), increasing the uncertainty of Hg export released by glacier melting. To investigate the relationships between TSP and Hg, a multimedia sampling campaign was conducted in July 2020 in the Kuoqionggangri glacier region of the Lhasa River Valley No. 1 glacierized basin located in the inland Tibetan Plateau. Samples from glacier snow/ice, supraglacial rivers, subglacial rivers, proglacial lakes, and meltwater runoff were obtained, and the relationships between TSP and Hg and their transport in glacier meltwater runoff in the context of glacier retreat were explored. The average TSP concentration of different environmental samples ranged from 9.51 mg/L to 399. 27 mg/L, showing significant differences. The average total Hg (THg) concentrations ranged from 0.52 ng/L to 58.81 ng/L and decreased in the order of snow/ice >runoff> subglacial river > proglacial lake > supraglacial river. Both TSP mass concentration and number concentration have an impact on the diurnal variation in meltwater runoff Hg, and the influence of TSP number concentration is stronger than that of concentration. Sites with high TSP concentrations and quantities tended to have higher Hg concentrations, while TSP particle size had no significant effect on Hg concentration or spatial distribution. Our study further divided the glacier recharge basin into the glacier cover zone, the periglacial zone, and the downstream zone and discussed the potential impact of TSP on Hg transport in each zone. Our analysis highlights that the periglacial zone will expand and activate the resuspension process of river sediments in the warming future, which may increase the export of TSP and Hg downstream.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article