Your browser doesn't support javascript.
loading
Solution-Processed Cu2S Nanostructures for Solar Hydrogen Production.
Zhang, Xi; Pollitt, Stephan; Jung, Gihun; Niu, Wenzhe; Adams, Pardis; Bühler, Jan; Grundmann, Nora S; Erni, Rolf; Nachtegaal, Maarten; Ha, Neul; Jung, Jisu; Shin, Byungha; Yang, Wooseok; Tilley, S David.
Afiliación
  • Zhang X; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
  • Pollitt S; Paul Scherrer Institut (PSI), Forschungsstrasse 111, 5232 Villigen, Switzerland.
  • Jung G; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Niu W; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
  • Adams P; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
  • Bühler J; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
  • Grundmann NS; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
  • Erni R; Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
  • Nachtegaal M; Paul Scherrer Institut (PSI), Forschungsstrasse 111, 5232 Villigen, Switzerland.
  • Ha N; School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
  • Jung J; SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Shin B; School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
  • Yang W; SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Tilley SD; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Chem Mater ; 35(6): 2371-2380, 2023 Mar 28.
Article en En | MEDLINE | ID: mdl-37008405
ABSTRACT
Cu2S is a promising solar energy conversion material due to its suitable optical properties, high elemental earth abundance, and nontoxicity. In addition to the challenge of multiple stable secondary phases, the short minority carrier diffusion length poses an obstacle to its practical application. This work addresses the issue by synthesizing nanostructured Cu2S thin films, which enables increased charge carrier collection. A simple solution-processing method involving the preparation of CuCl and CuCl2 molecular inks in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing was used to obtain phase-pure nanostructured (nanoplate and nanoparticle) Cu2S thin films. The photocathode based on the nanoplate Cu2S (FTO/Au/Cu2S/CdS/TiO2/RuO x ) reveals enhanced charge carrier collection and improved photoelectrochemical water-splitting performance compared to the photocathode based on the non-nanostructured Cu2S thin film reported previously. A photocurrent density of 3.0 mA cm-2 at -0.2 versus a reversible hydrogen electrode (V RHE) with only 100 nm thickness of a nanoplate Cu2S layer and an onset potential of 0.43 V RHE were obtained. This work provides a simple, cost-effective, and high-throughput method to prepare phase-pure nanostructured Cu2S thin films for scalable solar hydrogen production.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Mater Año: 2023 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Mater Año: 2023 Tipo del documento: Article País de afiliación: Suiza