Your browser doesn't support javascript.
loading
Designing N-Confused Metalloporphyrin-Based Covalent Organic Frameworks for Enhanced Electrocatalytic Carbon Dioxide Reduction.
Ren, Zhixin; Zhao, Bo; Xie, Jing.
Afiliación
  • Ren Z; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
  • Zhao B; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
  • Xie J; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Small ; 19(33): e2301818, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37010014
ABSTRACT
Electrochemical conversion of carbon dioxide (CO2 ) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN4 -Por-COFs) provide a platform for rational design of electrocatalyst for CO2 reduction reaction (CO2 RR). Herein, through systematic quantum-chemical studies, the N-confused metallo-Por-COFs are reported as novel catalysts for CO2 RR. For MN4 -Por-COFs, among the ten 3d metals, M = Co/Cr stands out in catalyzing CO2 RR to CO or HCOOH; hence, N-confused Por-COFs with Co/CrN3 C1 and Co/CrN2 C2 centers are designed. Calculations indicate CoNx Cy -Por-COFs exhibit lower limiting potential (-0.76 and -0.60 V) for CO2 -to-CO reduction than its parent CoN4 -Por-COFs (-0.89 V) and make it feasible to yield deep-reduction degree C1 products CH3 OH and CH4 . Electronic structure analysis reveals that substituting CoN4 to CoN3 C1 /CoN2 C2 increases the electron density on Co-atom and raises the d-band center, thus stabilizing the key intermediates of the potential determining step and lowering the limiting potential. For similar reason, changing the core from CrN4 to CrN3 C1 /CrN2 C2 lowers the limiting potential for CO2 -to-HCOOH reduction. This work predicts N-confused Co/CrNx Cy -Por-COFs to be high-performance CO2 RR catalyst candidates. Inspiringly, as a proof-of-concept study, it provides an alternative strategy for coordination regulation and theoretical guidelines for rational design of catalysts.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China