Your browser doesn't support javascript.
loading
Breath analysis by ultra-sensitive broadband laser spectroscopy detects SARS-CoV-2 infection.
Liang, Qizhong; Chan, Ya-Chu; Toscano, Jutta; Bjorkman, Kristen K; Leinwand, Leslie A; Parker, Roy; Nozik, Eva S; Nesbitt, David J; Ye, Jun.
Afiliación
  • Liang Q; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America.
  • Chan YC; Department of Physics, University of Colorado, Boulder, CO 80309, United States of America.
  • Toscano J; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America.
  • Bjorkman KK; Department of Chemistry, University of Colorado, Boulder, CO 80309, United States of America.
  • Leinwand LA; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America.
  • Parker R; Department of Physics, University of Colorado, Boulder, CO 80309, United States of America.
  • Nozik ES; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America.
  • Nesbitt DJ; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America.
  • Ye J; Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, United States of America.
J Breath Res ; 17(3)2023 04 05.
Article en En | MEDLINE | ID: mdl-37016829
Rapid testing is essential to fighting pandemics such as coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exhaled human breath contains multiple volatile molecules providing powerful potential for non-invasive diagnosis of diverse medical conditions. We investigated breath detection of SARS-CoV-2 infection using cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), a state-of-the-art laser spectroscopic technique capable of a real-time massive collection of broadband molecular absorption features at ro-vibrational quantum state resolution and at parts-per-trillion volume detection sensitivity. Using a total of 170 individual breath samples (83 positive and 87 negative with SARS-CoV-2 based on reverse transcription polymerase chain reaction tests), we report excellent discrimination capability for SARS-CoV-2 infection with an area under the receiver-operating-characteristics curve of 0.849(4). Our results support the development of CE-DFCS as an alternative, rapid, non-invasive test for COVID-19 and highlight its remarkable potential for optical diagnoses of diverse biological conditions and disease states.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: COVID-19 Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Breath Res Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: COVID-19 Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Breath Res Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido