Your browser doesn't support javascript.
loading
Persistent Homology With Improved Locality Information for More Effective Delineation.
IEEE Trans Pattern Anal Mach Intell ; 45(8): 10588-10595, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37028072
Persistent Homology (PH) has been successfully used to train networks to detect curvilinear structures and to improve the topological quality of their results. However, existing methods are very global and ignore the location of topological features. In this paper, we remedy this by introducing a new filtration function that fuses two earlier approaches: thresholding-based filtration, previously used to train deep networks to segment medical images, and filtration with height functions, typically used to compare 2D and 3D shapes. We experimentally demonstrate that deep networks trained using our PH-based loss function yield reconstructions of road networks and neuronal processes that reflect ground-truth connectivity better than networks trained with existing loss functions based on PH.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos