Your browser doesn't support javascript.
loading
Structure of Anabaena flos-aquae gas vesicles revealed by cryo-ET.
Dutka, Przemyslaw; Metskas, Lauren Ann; Hurt, Robert C; Salahshoor, Hossein; Wang, Ting-Yu; Malounda, Dina; Lu, George J; Chou, Tsui-Fen; Shapiro, Mikhail G; Jensen, Grant J.
Afiliación
  • Dutka P; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
  • Metskas LA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
  • Hurt RC; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
  • Salahshoor H; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
  • Wang TY; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
  • Malounda D; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
  • Lu GJ; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
  • Chou TF; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
  • Shapiro MG; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA 91125, USA. Electronic address: mikhail@caltech.edu.
  • Jensen GJ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; College of Physical and Mathematical Sciences, Brigham Young University, Provo, UT 84602, USA. Electronic address: grant_jensen@byu.edu.
Structure ; 31(5): 518-528.e6, 2023 05 04.
Article en En | MEDLINE | ID: mdl-37040766
Gas vesicles (GVs) are gas-filled protein nanostructures employed by several species of bacteria and archaea as flotation devices to enable access to optimal light and nutrients. The unique physical properties of GVs have led to their use as genetically encodable contrast agents for ultrasound and MRI. Currently, however, the structure and assembly mechanism of GVs remain unknown. Here we employ cryoelectron tomography to reveal how the GV shell is formed by a helical filament of highly conserved GvpA subunits. This filament changes polarity at the center of the GV cylinder, a site that may act as an elongation center. Subtomogram averaging reveals a corrugated pattern of the shell arising from polymerization of GvpA into a ß sheet. The accessory protein GvpC forms a helical cage around the GvpA shell, providing structural reinforcement. Together, our results help explain the remarkable mechanical properties of GVs and their ability to adopt different diameters and shapes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Anabaena / Dolichospermum flos-aquae Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Anabaena / Dolichospermum flos-aquae Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos