Your browser doesn't support javascript.
loading
Enrichment and response of iron-metabolizing microorganisms and metabolic genes in the contaminated area of stratified stacking coal gangue dumps, Northern China.
Chen, Di; Feng, Qiyan; Zhang, Yun.
Afiliación
  • Chen D; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
  • Feng Q; School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
  • Zhang Y; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China. fqycumt@126.com.
Environ Sci Pollut Res Int ; 30(23): 63603-63619, 2023 May.
Article en En | MEDLINE | ID: mdl-37046168
ABSTRACT
In the Xishan coalfield of northern China, the stratified stacking of soil and gangue was applied to limit the acid pollution from high-sulfur coal gangue. In this study, we found that stratified stacking can effectively neutralize the acidity, with the pH value of gangue-leaching water being 6.02-8.13. In contrast to the acidic contaminated area, most of the microorganisms in the study area sediment were neutrophilic, with the main genera being Arthrobacter, Pseudorhodobacter, Pseudomonas, and Rhodoferax. A variety of iron- and sulfur-metabolizing bacteria was discovered in the gangue-leaching sediment, with the total relative abundance ranging from 4.20 to 23.75%, of which the iron-reducing bacteria (FeRB) accounted for the highest percentage. The distributions of these functional microorganisms in the samples were significantly influenced by Fe and S. The co-occurrence network analysis revealed a significant positive correlation between the iron- and sulfur-metabolizing bacteria in the sediment (93.75%), indicating a strong reciprocal symbiotic relationship between these bacteria. The iron and sulfur metabolism genes in the sediment were predicted and compared based on the Tax4Fun functional prediction method. Results showed that functional genes related to iron metabolism were highly expressed in the gangue-leaching sediment. This study enhances the understanding of iron and sulfur metabolism in gangue-leaching contaminated areas.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbón Mineral / Hierro Tipo de estudio: Prognostic_studies País/Región como asunto: Asia Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbón Mineral / Hierro Tipo de estudio: Prognostic_studies País/Región como asunto: Asia Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2023 Tipo del documento: Article