Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients.
Nat Commun
; 14(1): 2102, 2023 04 13.
Article
en En
| MEDLINE
| ID: mdl-37055393
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients' histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neoplasias Colorrectales
/
Multiómica
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido