Your browser doesn't support javascript.
loading
Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients.
Tsai, Pei-Chen; Lee, Tsung-Hua; Kuo, Kun-Chi; Su, Fang-Yi; Lee, Tsung-Lu Michael; Marostica, Eliana; Ugai, Tomotaka; Zhao, Melissa; Lau, Mai Chan; Väyrynen, Juha P; Giannakis, Marios; Takashima, Yasutoshi; Kahaki, Seyed Mousavi; Wu, Kana; Song, Mingyang; Meyerhardt, Jeffrey A; Chan, Andrew T; Chiang, Jung-Hsien; Nowak, Jonathan; Ogino, Shuji; Yu, Kun-Hsing.
Afiliación
  • Tsai PC; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Lee TH; Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan ROC.
  • Kuo KC; Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan ROC.
  • Su FY; Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan ROC.
  • Lee TM; Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan ROC.
  • Marostica E; Department of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan ROC.
  • Ugai T; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Zhao M; Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Boston, MA, USA.
  • Lau MC; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  • Väyrynen JP; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Giannakis M; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Takashima Y; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Kahaki SM; Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
  • Wu K; Department of Medicine, Dana Farber Cancer Institute, Boston, MA, USA.
  • Song M; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Meyerhardt JA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Chan AT; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  • Chiang JH; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  • Nowak J; Department of Medicine, Dana Farber Cancer Institute, Boston, MA, USA.
  • Ogino S; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Yu KH; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
Nat Commun ; 14(1): 2102, 2023 04 13.
Article en En | MEDLINE | ID: mdl-37055393
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients' histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Colorrectales / Multiómica Tipo de estudio: Diagnostic_studies / Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Colorrectales / Multiómica Tipo de estudio: Diagnostic_studies / Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido