Pooling methods for likelihood ratio tests in multiply imputed data sets.
Psychol Methods
; 28(5): 1207-1221, 2023 Oct.
Article
en En
| MEDLINE
| ID: mdl-37104764
Likelihood ratio tests (LRTs) are a popular tool for comparing statistical models. However, missing data are also common in empirical research, and multiple imputation (MI) is often used to deal with them. In multiply imputed data, there are multiple options for conducting LRTs, and new methods are still being proposed. In this article, we compare all available methods in multiple simulations covering applications in linear regression, generalized linear models, and structural equation modeling. In addition, we implemented these methods in an R package, and we illustrate its application in an example analysis concerned with the investigation of measurement invariance. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Risk_factors_studies
Idioma:
En
Revista:
Psychol Methods
Asunto de la revista:
PSICOLOGIA
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos