Your browser doesn't support javascript.
loading
Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay.
Goncharov, Artem; Joung, Hyou-Arm; Ghosh, Rajesh; Han, Gyeo-Re; Ballard, Zachary S; Maloney, Quinn; Bell, Alexandra; Aung, Chew Tin Zar; Garner, Omai B; Carlo, Dino Di; Ozcan, Aydogan.
Afiliación
  • Goncharov A; Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Joung HA; Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Ghosh R; Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Han GR; Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Ballard ZS; Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Maloney Q; Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Bell A; Chemistry & Biochemistry Department, University of California, Los Angeles, CA, 90095, USA.
  • Aung CTZ; Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
  • Garner OB; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA.
  • Carlo DD; Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Ozcan A; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
Small ; 19(51): e2300617, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37104829
Multiplexed computational sensing with a point-of-care serodiagnosis assay to simultaneously quantify three biomarkers of acute cardiac injury is demonstrated. This point-of-care sensor includes a paper-based fluorescence vertical flow assay (fxVFA) processed by a low-cost mobile reader, which quantifies the target biomarkers through trained neural networks, all within <15 min of test time using 50 µL of serum sample per patient. This fxVFA platform is validated using human serum samples to quantify three cardiac biomarkers, i.e., myoglobin, creatine kinase-MB, and heart-type fatty acid binding protein, achieving less than 0.52 ng mL-1 limit-of-detection for all three biomarkers with minimal cross-reactivity. Biomarker concentration quantification using the fxVFA that is coupled to neural network-based inference is blindly tested using 46 individually activated cartridges, which shows a high correlation with the ground truth concentrations for all three biomarkers achieving >0.9 linearity and <15% coefficient of variation. The competitive performance of this multiplexed computational fxVFA along with its inexpensive paper-based design and handheld footprint makes it a promising point-of-care sensor platform that can expand access to diagnostics in resource-limited settings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas de Atención de Punto / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas de Atención de Punto / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania