Your browser doesn't support javascript.
loading
A Multiconfigurational Wave Function Implementation of the Frenkel Exciton Model for Molecular Aggregates.
Kaiser, Andy; Daoud, Razan E; Aquilante, Francesco; Kühn, Oliver; De Vico, Luca; Bokarev, Sergey I.
Afiliación
  • Kaiser A; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock. Germany.
  • Daoud RE; Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
  • Aquilante F; Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
  • Kühn O; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock. Germany.
  • De Vico L; Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
  • Bokarev SI; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock. Germany.
J Chem Theory Comput ; 19(10): 2918-2928, 2023 May 23.
Article en En | MEDLINE | ID: mdl-37115036
ABSTRACT
We present an implementation of the Frenkel exciton model into the OpenMolcas program package enabling calculations of collective electronic excited states of molecular aggregates based on a multiconfigurational wave function description of the individual monomers. The computational protocol avoids using diabatization schemes and, thus, supermolecule calculations. Additionally, the use of the Cholesky decomposition of the two-electron integrals entering pair interactions enhances the efficiency of the computational scheme. The application of the method is exemplified for two test systems, that is, a formaldehyde oxime and a bacteriochlorophyll-like dimer. For the sake of comparison with the dipole approximation, we restrict our considerations to situations where intermonomer exchange can be neglected. The protocol is expected to be beneficial for aggregates composed of molecules with extended π systems, unpaired electrons such as radicals or transition metal centers, where it should outperform widely used methods based on time-dependent density functional theory.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2023 Tipo del documento: Article